Vistas de página en total

lunes, 11 de junio de 2012

ULTIMOS ARTICULOS


ESTE OVARIO ARTIFICIAL NACE, CRECE Y REPRODUCE

El desarrollo de órganos de recambio diseñados con células del propio paciente abre puertas a la esperanza - La recreación de la función ovárica es el último paso - Lo más ambicioso: crear un corazón

Órganos creados en el laboratorio

En el fondo, la explicación más simple de la medicina regenerativa sería compararla con lo que hace el mecánico en un taller de reparaciones. De forma similar a cómo se cambia la inyección o la transmisión del coche cuando se han averiado, el objetivo final de esta disciplina es poder crear algún día en el laboratorio órganos artificiales biológicos (nada de prótesis autónomas) a partir de células del paciente, para sustituir un corazón, un riñón o una tráquea que no funcionan adecuadamente. Y en este proceso, las células madre, con su extraordinaria capacidad de proliferación y de especializarse en los distintos linajes celulares, son las protagonistas absolutas.
Uno de los últimos pasos en esta carrera ha llegado de la Universidad de Brown y del Women and Infants Hospital of Rhode Island, en Estados Unidos. Un equipo de investigadores ha logrado recrear in vitro un ovario artificial que ha conseguido en el laboratorio madurar ovocitos de forma que puedan ser fecundados e implantados, ya como embriones, en el útero de la madre. El objetivo es poder llegar a suplir la función ovárica en mujeres que, por ejemplo, tras un tratamiento de quimioterapia o radioterapia, la hubieran perdido.
Harán falta décadas para que la sustitución de órganos sea eficaz
Un trabajo con conejos consiguió no solo erecciones sino procreación
En Valencia pretenden crear espermatozoides en un medio artificial
Hay un trabajo de éxito con la implantación de vejigas en niños
Se podrían analizar los contaminantes en la maduración de los óvulos
El proyecto más espectacular en España es el diseño de un corazón
Esta línea de trabajo está cada vez más extendida en la medicina regenerativa. Equipos inspirados en la misma filosofía están tratando de recrear un corazón a través de la regeneración de un órgano desechado para trasplante con células madre, como el dirigido por el jefe de servicio del hospital Gregorio Marañón, Francisco Fernández-Avilés. En Valencia, un grupo del Centro de Investigación Príncipe Felipe pretende poder reproducir testículos artificiales biológicos.
No siempre la finalidad consiste en crear un nuevo órgano de recambio, como en el caso del corazón. En ocasiones, si se trata de órganos no vitales, como el ovario, basta con reproducir su función en el laboratorio. Esto es lo que ha conseguido el equipo estadounidense dirigido por la investigadora Sandra Carson.
Hasta el momento, la práctica más parecida para preservar la fertilidad en las mujeres es el reimplante de tejido ovárico. Buena parte de las personas que se someten a esta operación son pacientes a las que se les ha detectado un tumor.
Las sesiones de quimioterapia y radioterapia, en función de la intensidad del tratamiento, el tipo de cáncer o la lesión del paciente, pueden debilitar gravemente su capacidad reproductora. Antes de que esto suceda, las mujeres tienen la posibilidad de salvaguardar parte de su tejido ovárico, de forma que después del tratamiento, se le pueda reimplantar y puedan volver a ovular. El proceso consiste en extraer por laparoscopia la corteza de un óvulo -que contiene decenas de miles de ovocitos inmaduros- y congelarla. Cuando la paciente se encuentra recuperada del cáncer y desea ser madre, se le reimplanta el tejido en el otro óvulo, que al no haber sido manipulado ha estado menos expuesto a la medicación o a la radiación y se encuentra en un mejor estado. En varios meses, si todo ha ido bien, la mujer recupera su función ovárica.
Es una técnica reciente. En 2004 nació en Bélgica el primer bebé concebido tras este procedimiento experimental. En España, el primer caso tuvo lugar el mes de agosto del año pasado en el hospital Doctor Peset de Valencia. Pero el proceso presenta inconvenientes. Por un lado, el ovario solo vuelve a trabajar durante una temporada. Hasta el momento, se ha conseguido devolver la capacidad de volver a producir ovocitos en unos dos años.
Tampoco sirve para todo tipo de tumores, como las leucemias. Pero, sobre todo, no hay certeza absoluta de que al reimplantar el tejido obtenido no existan células malignas que puedan reactivarse en el cuerpo de la mujer.
Por eso, uno de los aspectos más destacados de la técnica publicada por el equipo de Sandra Carson en el Journal of Assisted Reproduction and Genetics el 25 de agosto es que evitaría de raíz este riesgo, como destaca el jefe de servicio de ginecología del hospital La Fe de Valencia, Antonio Pellicer. "Éste es el aspecto más interesante del trabajo", comenta.
Los científicos de la Universidad de Brown crearon un molde a partir de un gel (un polisacárido denominado agarosa) para usarlo como base del cultivo tridimensional sobre el que trabajaron. Sobre esta matriz recrearon el funcionamiento del ovario en el laboratorio al combinar los tres principales tipos de células del ovario.
Para que un ovocito (primer tipo celular) madure debe estar recubierto de una capa de células de la granulosa (segundo tipo) y esta, a su vez, de células de la teca (tercer tipo). Los investigadores reprodujeron este esquema. Diseñaron una estructura en forma de panal de abeja con células de la teca obtenidas de donantes y la situaron sobre el gel. Sobre esta trama encajaron cogollos de ovocitos inmaduros cubiertos de células de la granulosa también donados. A las 72 horas, las células de la teca habían envuelto totalmente los cogollos. Extrajeron los ovocitos y los investigadores observaron que habían madurado. "Es el primer éxito en el uso de ingeniería de tejidos en tres dimensiones en la maduración in vitro de ovocitos", defienden los autores de la publicación.
Quizás no sea para tanto. La revista Journal of Assisted Reproduction and Genetics tiene un índice de impacto (la forma de medir la importancia de una publicación científica) de 1,3, muy bajo en medicina reproductiva. Pero si la técnica llega a estandarizarse podría sustituir al trasplante de tejido ovárico (y evitar los problemas que lleva aparejados). Además, se podría emplear este ovario artificial de "laboratorio viviente", como lo define la propia Sandra Carson. No solo a la hora de estudiar cómo funciona un ovario sano, sino también para analizar los efectos de, por ejemplo, contaminantes en la maduración de los óvulos.
Este trabajo es una muestra más de las expectativas que abre la recreación en laboratorio de órganos biológicos de sustitución en cada vez más especialidades médicas. Uno de los grandes especialistas en la materia es Anthony Atala, director del Instituto de Medicina Regenerativa de la Universidad de Wake Forest, en Carolina del Norte. Entre los principales éxitos de esta medicina regenerativa basada en la ingeniería de tejidos se encuentra el diseño e implantación en chicos de siete a 19 años de vejigas creadas en laboratorio, que se anunció en 2006. En este caso, los órganos se crearon con las propias células de los pacientes sobre un molde biodegradable y ofrecieron buenos resultados funcionales, durante más de cinco años.
El equipo de Atala trabaja en aplicar esta técnica contra la impotencia humana. El año pasado presentó un trabajo en el que consiguió que conejos con lesiones en el pene volvieran a tener erecciones después de crear tejido cavernoso en el laboratorio y trasplantarlo a los animales. Recuperaron la función sexual y lograron reproducirse.
Con la vista puesta no en el pene, sino en los testículos, trabaja un equipo del Centro de Investigación Príncipe Felipe de Valencia. Uno de sus científicos se ha desplazado al laboratorio de Atala con la intención de crear un testículo biológico artificial. La idea de estos investigadores es estudiar la generación de espermatozoides a partir de sus células progenitoras, las espermatogonias. Y tratar de reproducir este proceso natural en un medio creado artificialmente.
Aunque quizás el proyecto más espectacular (y experimental) que se lleva a cabo en España es el diseño en laboratorio de un corazón que pudiera servir para autotrasplantarlo al paciente con dolencias cardíacas. En este proyecto participa tanto la Organización Nacional de Trasplantes, como la Universidad de Minnesota (EE UU) y el hospital Gregorio Marañón de Madrid.
En este caso, el molde no se obtiene de ninguna sustancia biodegradable, sino de otro corazón desechado para trasplante. A través de un baño de enzimas, se despoja al órgano de todas las células que conforman sus paredes, las que recubren el interior de los vasos y las válvulas hasta dejarlo en su estructura interna más básica, que no es más que una matriz. Sobre este molde se siembran células madre cardiacas para que proliferen y reproduzcan la estructura del corazón, de forma que pudiera servir para ser trasplantado.
"De momento tenemos ya bastantes matrices y estamos empezando a recelularizar partes de las piezas", comenta Francisco Fernández-Avilés, jefe de cardiología del hospital madrileño. "En el mejor de los casos, habrá que esperar 10 años para aplicar la técnica".
Existe un referente de éxito de este ensayo en España, aunque con un órgano bastante menos complejo. Se trata del trasplante de tráquea que se llevó a cabo en el hospital Clínic de Barcelona en 2008. El proceso también consistió en centrifugar la tráquea del donante a la que se le eliminaron las células capaces de despertar una reacción de rechazo en el receptor. La estructura tubular resultante se recubrió de células madre del paciente y la nueva tráquea se transfirió con buenos resultados.
Hará falta que pasen varias décadas hasta que la sustitución, pieza a pieza, de órganos complejos bioartificiales demuestre su eficacia y, quién sabe, forme parte de la cartera de servicios de la sanidad española. O de los talleres de la medicina del futuro.
Órganos creados en el laboratorio
Vejigas. El equipo del investigador estadounidense Anthony Atala, del Instituto Wake Forest de Medicina Regenerativa, publicó en The Lancet en 2006 la implantación de siete vejigas artificiales creadas en laboratorio a partir de moldes biodegradables que fueron colonizados por cultivos celulares de los propios pacientes.
Tejido cavernoso del pene. El mismo grupo de Wake Forest anunció el año pasado el trasplante de tejido cavernoso creado a partir de las células del receptor en conejos. La operación devolvió la función eréctil a los animales. El objetivo es combatir en el futuro la impotencia masculina mediante trasplantes similares.
Corazón. Un equipo del que forma parte la Organización Nacional de Trasplantes, el hospital Gregorio Marañón y la Universidad de Minnesota trabaja en la creación de corazones bioartificiales. Después de haber conseguido distintos moldes a partir de corazones no válidos para trasplante, están ensayando la colonización con células madre cardiacas de estas matrices. En el futuro se plantean abordar la misma técnica para crear hígados.
Tráquea. El hospital Clínic de Barcelona implantó en una mujer una tráquea obtenida de donante y colonizada por sus propias células (epiteliales de la nariz y células madre de la cadera) para sustituir a la suya gravemente dañada por una tuberculosis.
PREGUNTAS
1.       ¿En qué consiste la reprogramación celular?
* En poder crear un órgano artificial a partir de células madres para evitar el rechazo.
2.     ¿Qué pretende la medicina regenerativa?
*Crear organos completos para transplantes
3.     ¿Qué han logrado en la Universidad de Brow y en el Hospital de la madre y el hijo de New York?
*Han conseguido crear un ovario artificial para  poder madurar ovocitos y asi generar la reproducción.
4.     ¿Cómo construyeron en la Universidad de Brow el ovario artificial y qué consiguieron?
*Crearon un molde de gel y consiguieron el funcionamiento del ovario junto con las tres celulas del ovario.
5.     ¿En qué consiste y cuándo está indicado el reimplante de tejido ovárico?
*Extrae la corteza del ovulo y se congela. Cuando la paciente se encuetra ya recuperada del cancer y quiere tener un hijo se le implanta estas celulas de la corteza congelada ya que no ha estado expuesto a las radiacciones del tratamiento del cancer y sera mas facil de fecundar.
6.     ¿Qué pretenden hacer, en esta línea, en el Centro de investigación príncipe Felipe?
*Diseñar un corazon en el que puede sustituir enfermedades cardiacas.
7.     ¿Qué pretenden hacer, en esta línea, en el Hospital Gregorio Marañón?
* Pretende producir testiculos artificiales para que los espermatozoides que produzcan sean sanos.
8.     ¿Y en el Hospital Clinic de Barcelona?
* Un transplante de traquea en el que a traves de celulas evite el rechazo.


Uno de los 'padres' del genoma crea la primera célula artificial - La técnica abre nuevos horizontes a la investigación de fármacos y genera incertidumbres bioéticas

Una ley inviolable de la biología -toda célula proviene de la división de otra célula- ha regido la existencia y la evolución de todos los organismos de la Tierra desde hace 3.500 millones de años. Hasta ayer. La bacteria que acaba de salir de los laboratorios de Craig Venter es una célula, pero no proviene de otra, porque su genoma es pura química: ha sido sintetizado en el tubo de ensayo de la primera a la última letra. La materia inerte animada por el hombre -el mito del golem- ya vive entre nosotros.
La primera "célula sintética" se llama Mycoplasma mycoides JCVI-syn1.0, para distinguirla del Mycoplasma mycoides, que es la bacteria natural en quien se inspira: la que le ha aportado no su genoma (que es de origen químico), pero sí la información para fabricarlo (copiarlo). Aunque la célula sintética no tenga una madre biológica, sí que tiene una madre informática. JCV es por John Craig Venter, y el 1.0 lleva su sello: denota que la célula es sólo una primera versión y connota, o presagia, un futuro Sillicon Valley del diseño de organismos vivos.
El científico planea diseñar un alga que convierta el CO2 en hidrocarburos
"Ha cambiado mi opinión sobre la definición de vida y su funcionamiento"
La reconstrucción de formas biológicas a partir de su mera información genética -de una secuencia de letras de ADN escritas en un papel, o almacenadas en una memoria- ya se había experimentado con virus, entre ellos el de la polio y el de la gripe española de 1918. Pero los virus no son entidades biológicas autónomas. Para reproducirse usan la maquinaria de la célula a la que infectan. Aunque un virus puede tener solo tres genes, esa maquinaria celular requiere cientos de ellos.
Es difícil predecir el alcance de esta tecnología. Entre los proyectos de Venter está diseñar un alga -unicelular, como la mayoría de las algas naturales- que fije el CO2 atmosférico y lo convierta en hidrocarburos, utilizando la energía de la luz solar. Otros proyectos buscan acelerar la producción de vacunas y mejorar la producción de ciertos ingredientes alimentarios, y de otros compuestos químicos complejos, o diseñar microorganismos que limpien aguas contaminadas.
Pero estos fines empresariales conviven, de forma paradójica, con cuestiones de profundidad. ¿Cuál es el genoma mínimo para sostener la vida? ¿Hay un conjunto de secuencias genéticas que define la frontera entre lo vivo y lo inerte? ¿Es esto una forma rampante de reduccionismo que pueda afectar a nuestra concepción de la vida humana?
"Este es un paso importante tanto científica como filosóficamente", admitía ayer Venter. "Ha cambiado mis opiniones sobre la definición de vida y sobre cómo la vida funciona". El trabajo plantea otras cuestiones menos profundas, pero apenas menos relevantes, sobre seguridad pública, bioterrorismo y propiedad intelectual.
Por una vez, la bioética no tiene que salir corriendo detrás de la ciencia. El propio Venter se ocupó de estimular la discusión desde el principio, y algunos de los más respetados bioéticos del mundo llevan más de 10 años analizando la cuestión. Entre ellos, Mildred Cho, del centro de ética biomédica de la Universidad de Stanford, y Arthur Caplan, del centro de bioética de la Universidad de Pensilvania. El grupo de trabajo también incluye teólogos como Daniel McGee, de la Universidad de Baylor. Han recopilado sus estudios en Synthetic Genomics Options for Governance(disponible en www.jcvi.org/cms/research/projects/syngen-options/overview/). Cho y Caplan publicaron un artículo de referencia en 1999 (Science 286: 2087).
Entre los ángulos polémicos del nuevo mycoplasma está su denominación. Los autores lo llaman célula sintética, cuando solo su genoma lo es. Una vez sintetizado el genoma, los científicos lo introdujeron en una célula (de otra especie de Mycoplasma) a la que antes habían quitado su propio genoma. Y un ser vivo no está hecho solo de genes. Las proteínas, los azúcares y las grasas son fundamentales como componentes de la célula, y para procesar su energía, o formar membranas.
Pero los azúcares y las grasas son sintetizados por enzimas, que son un tipo de proteínas. Y las proteínas se ensamblan a partir de sus unidades químicas (los aminoácidos) siguiendo el orden que dicta la secuencia deletras de los genes. Por tanto, aunque la "célula sintética" original solo lo fuera a medias, sus descendientes lo son por entero.
"Esta es la primera célula sintética que se ha hecho", dijo Venter, "y la llamamos sintética porque la célula se deriva enteramente de un cromosoma sintético, hecho con cuatro botes de productos químicos en un sintetizador químico a partir de pura información guardada en un ordenador".
El trabajo, que adelanta hoy la revista Science en su edición electrónica, es la culminación de un proyecto que empezó hace 15 años, cuando Venter y su equipo hallaron un modo de estimar el genoma mínimo, la mínima información necesaria para sostener la vida autónoma. Tomaron uno de los organismos con el genoma más pequeño conocido, otro mycoplasma (Mycoplasma genitalium), que vive en el tracto urinario humano. Le estropearon los genes uno a uno para quedarse solo con los indispensables. Ese genoma mínimo suficiente para sostener la vida resultó tener solo 350 genes. Ese fue el punto de partida para el resto de la investigación, con esa y otras especies del género Mycoplasma.
El genoma de un retrovirus, como el VIH, tiene unas 10.000 letras, obases, en la jerga. El de Mycoplasma mycoides, la madre informática de la célula artificial, mide algo más de un millón de bases. Los genomas suelen medirse en megabases, o millones de letras, así que el genoma de este mycoplasma tiene una megabase. El genoma humano mide 3.000 megabases.
Las máquinas de sintetizar ADN están muy lejos de cualquiera de esas cifras. Son muy rápidas y baratas, pero sus productos no pasan de 100 bases. El equipo de Venter ha tenido que ensamblar esos fragmentos en una jerarquía de pasos: primero en cassettes de 1.000 bases, luego en ristras de 10.000, después en superristras de 100.000 y finalmente en la megabase total. Cada paso requiere usar seres vivos naturales, lo mismo la bacteria Escherichia coli, que la levadura del pan,Saccharomices cerevisiae.
El genoma sintético no es idéntico al natural. Tiene 14 genes menos, unas pocas mutaciones ocurridas durante el largo procedimiento -todas identificadas- y unas marcas de agua añadidas por los investigadores para distinguirlo con certidumbre de la versión natural. Pese a todo, la célula sintética Mycoplasma mycoides JCVI-syn1.0 se comporta como unMycoplasma mycoides cualquiera por cualquier criterio fisiológico o bioquímico.
Venter es una figura única en el panorama científico. Uno de los investigadores más brillantes del proyecto genoma público, se hizo famoso al montar un proyecto privado para competir con él. Cuando esta carrera acabó -en empate-, Venter reasignó sus sistemas rápidos a secuenciar (leer las letras del ADN gtaatct...) en masa la vida marina. Su actual empresa se llama Synthetic Genomics. Uno de sus principales proyectos es energético: diseñar un alga unicelular que genere hidrocarburos a partir de la energía de la luz solar y el CO2 atmosférico.
Durante su exploración en masa de la vida marina, el equipo de Venter descubrió miles de especies de microorganismos, y millones de nuevos genes. El 85% de las secuencias genéticas son diferentes cada 350 kilómetros, y muchas de las especies son únicas. Entre esos genes nuevos hay 3.000 para fotorreceptores, las proteínas que captan la luz de distintas longitudes de onda.
Una de las ideas de Venter es crear una bacteria artificial con una ristra de esos genes y que capte así un espectro muy amplio de la luz solar. El científico estima que una bacteria artificial de este tipo podría convertir en hidrógeno un 10% de la energía solar, y que sembrarla en 13.000 kilómetros cuadrados bastaría para alimentar todo el transporte de EE UU. La tecnología genética es capaz de multiplicar el rendimiento de un proceso natural por 10.000 o 100.000 veces.

PREGUNTAS
1.         Antes de crear esta “célula sintética” por qué era ya famoso Venter ¿Cuál es su nuevo proyecto?
* Por la investigación del genoma humano
2.        Antes de crearse esta “célula sintética” y desde el principio de la vida toda célula había procedido siempre de….
*Proviene siempre de la división de otra célula.
3.      ¿Cómo se ha obtenido la “célula sintética” llamada Mycoplasma mycoide JCVI-syn 1.0?
* Por productos químicos y con la ayuda de la tecnología avanzada de los ordenadores
4.     ¿Se había recreado algún otro ser vivo a partir de su genoma anteriormente?
*No, ya que no ay la informacion necesaria
5.      ¿Hay algún otro proyecto de este tipo?
*Intenta hacer una alga unicelular  para poder convertir el hidrogeno en energia solar. no porque este genoma es luego metido en una celula normal
6.     ¿Con esta experiencia se obtuvo realmente una célula completamente sintética?
*sus descendientes si.
7.     ¿Cómo se formo el cromosoma sintético?
*Se formo a partir de azucares, proteinas y grasas 
8.     ¿Cuál es el número de nucleótidos y de genes mínimo para sostener una vida autónoma de Mycoplasma? ¿Cuántos nucleótidos tiene el genoma humano?
*350 genes como minimo. Tienen unas 10000 letras.
9.     ¿En qué se diferencia el genoma del  Mycoplasma mycoide JCVI-syn 1.0 del de la especie natural? ¿A qué  se deben estas diferencias?
*Tienen 14 genes menos debido alas mutaciones producidas


MONOS CON SEIS PROGENITORES
Nacen dos macacos creados a partir de la fusión de tres embriones

Agitar y engendrar. Después de muchos intentos por conseguir monos viables (en concreto, macacos rhesus) con componentes genéticos de varios individuos, al final lo que ha funcionado -por lo menos hasta ahora- es el método más burdo: juntar los embriones y dejar que se mezclen. Es la primera vez que se crean quimeras de este tipo en primates. Y ya se sabe que cada avance con monos implica que se está más cerca de conseguirlo en humanos.
El trabajo muestra que células madre de embrión y de cultivo difieren
Las barreras biológicas de cada individuo aparecen muy pronto
La investigación, que publicó ayer Cell Press, es relativamente sencilla de contar. Lo que los investigadores de la Universidad de Ciencia y Salud de Oregón (OHSU por sus siglas en inglés) han hecho ha sido juntar embriones de tres parejas de macacos, y conseguir que nazcan dos gemelos, Roku y Hex, cada uno con material genético proveniente de las seis aportaciones: los tres padres y las tres madres. Eso sí, para que el experimento funcionara hubo que tomar los embriones en un estado muy inicial, cuando solo contaban con cuatro células.
La fabricación de quimeras (nombre que viene del animal mitológico que tenía cabeza de león, vientre de cabra y cola de dragón) ya se había conseguido en roedores y otros mamíferos, pero nunca en primates. Aunque en este caso se trata de quimeras particulares, ya que no mezclan partes de distintas especies, sino de distintos animales; en cualquier caso, de muchos más que los dos de un proceso de reproducción normal, o los tres en el caso de que haya una transferencia nuclear, en cuyo caso el hijo tiene material genético del padre y de dos madres, la que aporta el ADN del núcleo del óvulo y la -minoritaria- que suministra el ADN mitocondrial.
"Las células no se han fusionado, pero permanecieron juntas y trabajaron para crear órganos", describe el principal autor del trabajo, Shoukhrat Mitalipov. "Las posibilidades para la ciencia son enormes".
Pero esas posibilidades no se esperan sino a muy largo plazo. De momento, lo que los investigadores han conseguido parece poco práctico. En los animales se han encontrado células derivadas de los tres embriones originarios en todos los órganos. Y esto tiene una utilidad relativa. Porque lo que sí que tendría sentido sería crear un ser con los genes para conseguir el mejor hígado, el corazón más resistente y el cerebro más desarrollado, pero no una mezcla descontrolada de todo ello. No solo por la mezcla, sino porque no ha habido ninguna posibilidad de dirigir el proceso: los investigadores, una vez se creó el embrión-fusión y este empezó a desarrollarse, no tuvieron ninguna posibilidad de decidir dónde iban los genes de cada uno de los progenitores, que es algo clave en las modernas terapias génicas.
Por eso los investigadores, curiosamente, dedican la mayor parte del artículo a explicar qué es lo que no había funcionado sobre lo que sí dio resultado. Porque ellos intentaron primero un trabajo más fino. Por ejemplo, insertando células madre embrionarias obtenidas de unos cultivos en embriones de otras parejas, y el resultado fue que no se integraron. Por un motivo que no se conoce, el mono que nació era solo hijo de su padre y de su madre, pero no tenía aportaciones genéticas añadidas del cultivo. Tampoco funcionó la inyección en un blastocisto (una especie de pelota con un montoncito de células en un polo al que se llega a las dos semanas de desarrollo en humanos) de células de otro. Es lo que los científicos denominan inserción de masa celular interna. Ahí se consiguió que nacieran monos con el material genético de los progenitores originales o con los de la nueva aportación, pero tampoco hubo mezclas. Y no se sabe por qué.
Por estos fracasos, Mitalipov cree que este trabajo tiene otra ventaja: permite saber más sobre la diferenciación celular en las primeras fases del desarrollo. La primera conclusión es que esta es tan específica de cada individuo que en cuanto pasan varios días de desarrollo del óvulo fecundado las barreras son, por el momento, invencibles. "Necesitamos replantearnos lo que sabemos", afirma el investigador. "Tenemos que estudiar no solo las células madre cultivadas [que pueden mantenerse durante años y que son las que se usan en los ensayos actuales que hay con este material biológico], sino también las células madre mientras están en los embriones. Es demasiado pronto para cerrar el capítulo de estas últimas".
La diferencia tiene mucha importancia. Para tener células madre en un cultivo bastaría con usar las que ya existen. Es lo que se intentó en EE UU cuando el Ejecutivo de George W. Bush prohibió financiar la creación de nuevos cultivos de células madre embrionarias humanas con fondos federales. El argumento fue que con las líneas que ya había era suficiente, y de esta manera el Ejecutivo conservador pretendía acallar las críticas de quienes se oponían a la técnica por entender que para obtener las células había que destruir embriones, y que, aunque fuera en una etapa tan primaria como los primeros 14 días, cuando estos son unas pelotas huecas sin sistema nervioso diferenciado, eso era un aborto. La misma postura subyacía en la reforma de la ley de reproducción asistida que llevó a cabo el último Gobierno de Aznar, cuando se decidió que se podían dedicar a investigar los embriones sobrantes de los procesos de fecundación in vitro ya congelados, pero no los de nueva creación.
Pero este experimento apunta a que no puede fiarse todo el trabajo en un campo tan prometedor a los cultivos ya obtenidos. Si hay una diferencia entre células madre embrionarias recién extraídas o las cultivadas, no podrá renunciarse a seguir trabajando con las primeras.

PREGUNTAS
 ¿Cuándo se considera que una estirpe celular es pluripotente? Explícate.
* Cuando tienen entre 4 o 5 dias y son capaces de formar cualquier tejido.
  ¿Cuál es la dificultad para utilizar las células madres en medicina? ¿Qué aportan los macacos gemelos a la aplicación de las células madres? 
* Ninguna célula madre ha pasado el test de ser pluripotentes .Han aportado una gran ayuda en la investigación para el ser humano
  ¿Son siempre  pluripotentes las células madres de los primates?
*No solo cuando se extraen directamente de embriones.
 ¿Cuánto material genético se mezcla en una reproducción sexual normal y cuánto en una transferencia nuclear?
*En la reproducción sexual el del padre y el de la madre pero en las transferencias nucleares puede haberse transferido todo tipo de material genético que se ha utilizado.
 ¿Cómo se ha conseguido la primera quimera de mono
Se obtuvo tres embriones de macacos, luego se fusiona cuatro celulas de 3 embriones,y se desarrolla un embrión con 3 células de embriones, esto hace que nazca embriones geneticamente diferente.
¿Cómo se formaron los órganos de los gemelos
*Con la ayuda de los tres embriones dejandolo que se mezclen y a que se desarrollen solos.
 ¿Qué células se investigan para la medicina regenerativa?
* Las celulas madres pluripotentes, que se consiguen del pelo o de la piel y hace que esta no se llegue a desarrollar y tenga la capacidad de convertirse en cualquier cosa